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Executive Summary

The goal of this milestone is to enhance the performance of Nek5000 for thermal-hydraulics analysis.

In this milestone, the focus is on accelerating the time to solution for the coupled calculations
of turbulent flows and thermal variations having different time scales that which require resolution
of fine-scale structures. The main artifacts delivered include the following:

• Developing steady-state solvers for rod bundles and pebble beds

• Enhancing RANS solvers with improved stability and performance

This document covers work primarily funded under the NEAMS program. We note that the
achievements listed here would have been impossible without a strong collaboration between the
NEAMS team and ECP-CEED team. This synergy was enabled by algorithmic developments funded
by DOE ECP Co-Design CEED and DOE ASCR Applied Math program.

In this document we are reporting some details on the algorithmic strategies and their results.
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1 Introduction

The goal of this milestone is to enhance the performance of Nek5000 for thermal-hydraulics analysis.
In order to achieve the milestone, a strong collaboration between NSE/NEAMS and MCS/ECP-
CEED’s Nek5000 development teams was essential, which was brought by synergistic efforts between
NEAMS, CEED and ECP application collaborations.

For the thermal-hydraulics analysis, hundreds of thousands of flow channels comprise turbulent
flow with very fine solution scales. The channels are typically hundreds of hydraulic diameters in
length. While the turbulence is challenging to resolve, it tends to reach a statistically fully-developed
state within just a few channel diameters, whereas thermal variations take place over the full core
size. This poses a challenge for coupled calculations. It is unpractical and too expensive to consider
performing a full LES calculations throughout the whole core. Acceleration that couples the solution
through the use of steady-state solvers is necessary.

In this milestone, the focus is on accelerating the time to solution for the coupled calculations
of turbulent flows and thermal variations at different time scales that have challenging fine scale
spatial requirements. In this document we report some details on the algorithmic developments and
their performance that include the following:

• Developing steady state solvers for rod bundles and pebble beds

• Enhancing Reynolds-averaged Navier-Stokes (RANS) solvers with improved stability and
performance

For the thermal transport, steady-state solvers employ fast-diagonalization-based precondition-
ers that are based on low-rank-tensor approximations to the governing spectral element operators
[1, 2]. These preconditioners are embedded in an outer Jacobian-Free Newton Krylov (JFNK)
method [3]. For the RANS transport, stability-enhanced k-ω and k-τ models are considered.

2 Steady Thermal Solvers

Rod bundles represent an essential component of both classical and modern nuclear power plants. In
most concepts, fuel assemblies comprise a large number of packed cylinder arrays of rods containing
the nuclear fuel and surrounded by the liquid coolant. The prediction of the temperature distribution
within the rod bundle is of major importance in the reactor design and is determined primarily by
the flow characteristics in the subchannels bounded by adjacent rods. The problem lies, however, in
the high Reynolds number that characterizes these flows, which dictates the required local resolution
and also an increment in the timescale separation. This leads to smaller timesteps and longer
transients, eventually making these simulations infeasible.

In collaboration with NEAMS and CEED’s Nek5000 teams, we explored overcoming the
excessive cost of large eddy simulations (LES) of full-length heated rod bundle calculations. Nek5000’s
steady-state solvers, developed under the ECP CEED project, have been applied for solving steady
thermal flows for a long rod bundle and pebble beds geometries. We demonstrate an improved
performance for a rod bundle [4] and preliminary results for pebble bed simulations. We also
describe the algorithmic approaches that are based on Schwarz preconditioned fast diagonalization
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methods [1, 2] and Jacobian-Free Newton Krylov methods [3]. Some of the efforts have been
published, and the others are currently in preparation for journal publications.

2.1 LES-Based Turbulent Thermal Stress Models for Rod Bundle Simulations

While LES of an entire rod bundle is prohibitively expensive in most cases, the simulation of a
small axial section of a bare rod is typically affordable. the NEAMS team’s strategy is to use
average and fluctuating information from a “small” but highly resolved LES of a single rod to build
custom models of the turbulent thermal stresses that can be employed in the simulation of the
entire full-length rod (see Figure 1). The idea reported here consists of using the information from
the small LES calculation to determine the appropriate turbulence viscosity or turbulent thermal
diffusivity that could be used to solve only for the temperature field in a pseudo-RANS approach.
The detailed work has been published in IJHMT [4]; this report focuses on its subset, namely, the
results by Nek5000’s steady-state solver.

While the fluid viscosity does not depend on temperature under a valid assumption for the
cases that are considered for the proposed methodology, velocity equations are completely unlinked
to the temperature field. Using the Reynolds-averaging operator, one may divide instantaneous
fields in an average part (time average for statistically steady flows) and a fluctuating part (i.e.,
ui = ūi + u′i). When this approach is applied to the Navier-Stokes equations, the RANS equations
are obtained as

∂ui
∂t

+
∂

∂xj
(uiuj) = −1

ρ

∂p

∂xi
+

∂

∂xj

[
ν

(
∂ui
∂xj

+
∂uj
∂xi

)]
+

∂

∂xj

(
−u′iu′j

)
, (1)

∂ui
∂xi

= 0, (2)

∂T

∂t
+ uj

∂T

∂xj
=

∂

∂xj

(
α
∂T

∂xj

)
+

∂

∂xj

(
−u′jT ′

)
, (3)

where the turbulent heat fluxes can be modeled following a gradient diffusion hypothesis,

− u′jT ′ = αt
∂T

∂xj
. (4)

Considering the proposed methodology, once the average velocity field and the turbulent
diffusivity are obtained by the pseudo-RANS approach, one may solve for the Reynolds-averaged

Table 1: CPU time and number of iterations required to reach L2 errors at the level of 10−7, using
8 KNL nodes (512 MPI ranks) on Argonne’s Bebop cluster.

Case No. of Iterations CPU Time (min)

tol 10−2 10−4 10−6 10−2 10−4 10−6

BDF1/EXT 75275 34456 23026 154 97 114

BDF2/EXT 63854 31854 22371 130 90 106

BDF3/EXT 57163 30063 22095 117 85 103

SS 60 12
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Figure 1: Geometry for bare rod in triangular array [4]. LLES represents the length used for the
pseudo-RANS approach, which is shorter than the full length Lz.

temperature field by considering the transient problem as described in Eq. (3), until a steady state
is reached. Standard transient solvers in Nek5000 would need to advect the solution over times
τ � ∆t, where ∆t is the step size, limited by stability. An alternative approach for accelerating the
convergence of the thermal advection is to consider a steady-state solver. In this framework, the
equation to be solved by the steady-state solver is

uj
∂T

∂xj
=

∂

∂xj

(
(α+ αt)

∂T

∂xj

)
, (5)

where uj , α, and αt are given. We demonstrate the performances of the steady-state (SS) solver
and the transient solvers. In particular, the solution of the temperature field with the pseudo-RANS
approach was obtained based on the kth-order time discretization schemes involving the BDFk with
extrapolations (EXT). The temperature field was initialized to T0 in the entire domain. To obtain
a reference solution, we ran the SS solver until full convergence (machine precision) to produce a
steady solution T ref . In the subsequent simulations, T ref was taken as a reference, and the error of
the predicted T with respect to T ref was evaluated for each approach at each timestep in the L2

norm.

For the transient solver, the timestep was fixed so that the maximum Courant number based
on the frozen velocity field was CFL = 0.5. Three tolerances of the linear Helmholtz solver were
chosen for the convergence criteria of each time step: tol = 10−2, 10−4, or 10−6. For both the SS
and BDFk/EXT schemes, the simulations were run until they reached the level of errors 10−7 in
the L2 norm. We calculated the evolution of the error norm, the required number of iterations, and
the simulation time using 8 KNL nodes (512 MPI ranks) on Argonne’s Bebop cluster. The results
are shown in Figure 2 and listed in Table 1.

Figure 2 shows the convergence behaviors of the transient solution compared with the reference
solution for the BDFk/EXT schemes. We observe a significant increase in the computational cost
as the tolerance gets tighter with tol = 10−6. The significant computational cost of increasing the
convergence of each timestep (tightening the tolerance to tol = 10−6) or increasing the order of
accuracy can be clearly extracted from Figure 2 and Table 1. While slower at the beginning, the
tighter tolerance in the linear solver might be worthwhile, however, since the required number of
iterations to reach a given level of convergence might be reduced, as demonstrated in Figure 2. For
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Figure 2: Error norm evolution for the transient solvers with BDF1/EXT (green), BDF2/EXT
(red), BDF3/EXT (blue), and the SS solver (black). Transient solver results are shown for the
linear solver tolerances of 10−2 (—), 10−4 (- · -), and 10−6 (- - -) with the timestep iterations and
simulation time. The steady-state (SS) solver results are shown with the GMRES iterations and
simulation time using E = 21660 spectral elements with N = 7 [4].

the simulations performed, considering the fastest time discretization scheme and larger tolerance
(BDF3/EXT with tol = 10−4), the SS solver is still about 7 times faster.

2.2 Pebble Beds

While the long rod bundle case solves the steady linear advection-diffusion equation (5) using
GMRES with Schwarz-preconditioned fast diagonalization method, the JFNK method involving
pseudo-timestepping is often considered relatively more stable for solving steady problems with very
complex geometries. In this framework, the equation to be solved by the JFNK steady solver is

∂T

∂t
+ uj

∂T

∂xj
=

∂

∂xj

(
(α+ αt)

∂T

∂xj

)
. (6)

Figure 3 demonstrates the steady thermal flows obtained by the Nek5000 JFNK solver while
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Figure 3: Temperature profile of pebble beds; 5-million spectral element mesh, representing 363
pebbles (E = 5M,N = 5); Steady-state solver based on JFNK method.

the velocity profile is given from precalculations. The geometry consists of 363 pebbles, simulated
by 5 million spectral elements (E = 5M) with polynomial degree (N = 5). Our preliminary results
show the JFNK is applicable to the complex geometry. The total pseudo-timestepping allows
a very large timestep size (such as ∆τ = 1012) from the initial pseudo-timestep and reaches to
steady-state solution within 5 pseudo-timesteps. However it requires 10∼20 Newton iterations at
each pseudo-timestep with large GMRES iteration counts. Adding preconditioning to JFNK is a
necessary component to speed up the computation; this is currently work in progress.

2.3 Schwarz-Preconditioned Spectral Element Method for Steady Thermal Flow

Nek5000’s steady-state solver uses a tensor product-based fast diagonalization method implemented
for an overlapping Schwarz smoothing technique, integrated into a spectral element multigrid precon-
ditioner [1, 2]. The tensor-product overlapping Schwarz spectral element multigrid preconditioner
is formulated for the advection-diffusion operators based on spectral element discretizations and
applied as a preconditioner for the GMRES procedure for solving Eq. (5).

The steady-state advection-diffusion and steady-state Navier-Stokes (NS) equations share a
nonsymmetric, non-positive-definite character arising from advective transport. Preconditioning
these systems for tensor-product-based spectral element methods presents unique challenges and
opportunities. Following earlier work for the Poisson and Stokes problems [5, 6, 7, 8], we developed
a p-multigrid (PMG) strategy that uses overlapping Schwarz solves for a smoother at each level. For
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the steady advection-diffusion problem, PMG is used directly as a preconditioner within a Krylov
subspace projection (KSP) method such as GMRES.

The smoother for our current p-multigrid preconditioner is based on a simple Richardson
iteration involving a preconditioner, M . Coupling this with a coarse-grid correction leads to the
two-level preconditioner given by the following pseudo-code.

Approximate the solution to Lx = b; x0 = 0: (7)

x1 = x0 + M(b − Lx0)

r1 = b − Lx1

rc = JTc r1

xc = L−1c rc (8)

x = Jcxc (return x)

Here, L is assumed to be the spectral element advection-diffusion operator, M ≈ L−1 is the Schwarz
smoother, and Lc = JTc LJc is the coarse-grid system with Jc an interpolator from polynomial degree
p′ < p to polynomial degree p within each spectral element. The coarse-grid problem (8) is solved
by an invocation of the same two-level strategy, starting on a coarser grid, which leads to a classic
p-multigrid, or by an iterative KSP scheme.

2.4 Jacobian-Free Newton Krylov Method for Steady Thermal Flow

Our JFNK method is introduced in [3] for solving drift-diffusion systems, coupled with a Poisson
equation describing electric potential. This approach has been directly extended to Navier-Stokes
and RANS models. In [3], we provide detailed studies of the choices of parameters that can assure
accuracy and efficiency. Our spatial discretization is based on the spectral element method using
curve-fitted hexahedral elements. We apply a backward difference formula to the semidiscrete form
du
dt = f(u) and build a system of nonlinear equations g(u) expressed with the timestep size ∆τ
and f(u) during the pseudo time-transient process. Then we solve the resulting nonlinear system
g(u) = 0 by the Newton method until the solution reaches steady state globally over time. The key
ideas of the approach are how to compute the Jacobian matrix-vector product in Newton iterations
and how to calculate the function f(u). We approximate the Jacobian metrix-vector product by
finite differences and f(u) obtained by a backward difference formula using a local timestep ∆t.
With proper choices between ∆τ and ∆t, our method allows a larger pseudo-transient timestep size
∆τn as the global time-integration evolves, and thus the total number of pseudo-transient timesteps
can be significantly reduced to reach the steady solution.

3 Reynolds-Averaged Navier-Stokes Solvers

We investigated two approaches for the boundary layer treatment in our Nek5000 RANS solver: (1)
the wall-resolved regularized approach [9] where we have to use adequate resolution inside the very
thin log and viscous sublayers and (2) the new wall-function approach [10] where we do not need
such high resolution as we move the boundary to a y+ of about 50–100. The wall function approach
does not need to resolve the very sharp profiles immediately adjacent to the wall. Hence, the source
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Table 2: Drag and lift coefficients (aoa=0). Experimental data: NASA-TM-4074 [11].

Nek5000 results References Exper.

model kw98 (N=7/N=11) kτ98 (N=7) kw06 (N=7/N=11) kτ06 (N=7) CFL3D FUN3D

drag 0.00872 / 0.00843 0.00842 0.00861/0.00833 0.00832 0.00854 0.00837 ∼0.0081
lift ±1E-5/±1E-5 1.55E-5 ±1E-5/±1E-5 1.21E-5 ∼0 ∼0 ∼-0.01

Table 3: Drag and lift coefficients (aoa=10). Experimental data: NASA-TM-4074 [11].

Nek5000 results References Exper.

model kw98 (N=7) kτ98 (N=7) kw06 (N=11) kτ06 (N=7/N=9) CFL3D FUN3D

drag - 0.01507 0.01391 0.01468/0.01432 0.01259 0.01297 ∼ 0.012
lift - 1.0582 1.0639 1.0592/1.0609 1.0958 1.1012 ∼ 1.075

Figure 4: Comparison of mean streamwise velocity u+ and turbulent kinetic energy k+ profiles for
k − ω and k − τ models.

terms in the ω equation, which are treated explicitly, are not as large in the wall function approach
and create less of a stability problem.
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Our RANS model is based on a regularized k-ω model, including the turbulent kinetic k and
the specific dissipation rate ω in addition to the velocity field v. The model describes the turbulent
properties of incompressible flows with

k =
〈u′2〉+ 〈v′2〉+ 〈w′2〉

2
, (9)

where u′, v′, and w′ are fluctuation component of velocity vector around the ensemble-averaged
mean velocity vector v = (u, v, w) governed by

∂(ρv)

∂t
+∇ · (ρvv) = −∇p+∇ ·

[
(µ+ µt)

(
∇v +∇vT − 2

3
∇ · v

)]
, (10)

∂(ρk)

∂t
+∇ · (ρkv) = ∇ ·

[
(µ+

µt
σk

)∇k
]

+ P − ρβ∗kω, (11)

∂(ρω)

∂t
+∇ · (ρωv) = ∇ ·

[
(µ+

µt
σω

)∇ω)

]
+ γ

ω

k
P − ρβω2 + Sω, (12)

where µ is the molecular viscosity and µt is the turbulent viscosity with the continuity equation for
incompressible flow

∇ · v = 0, (13)

and where Sω is the cross-diffusion term, which is nonzero only for the kw06. (We denote the Wilcox
1998 [12] and 2006 [13] versions as kw98 and kw06, respectively.) We have implemented and tested
several RANS approaches in Nek5000, including the regularized k − ω model above, as well as some
versions of the k − ε model and the k − τ model described below. We have tested these models in
turbulent channel flow, flow past a backward-facing step, and external flows, such as flow past a
wind turbine blade and the NACA0012 airfoil at 0 and 10 degrees angle of attack (aoa).

We found that the k− τ model gives exactly the same results with the k−ω and for this reason
we investigated this model more extensively and plan to use it further to study more complex flows.
The main advantages of the k − τ model are that it does not rely on the wall-distance function or
its derivatives and the terms appearing in the right-hand-side of the model equations are bounded
close to walls.

As described in the next subsections, we also investigated ways to increase the stability, accuracy
and robustness of our RANS approaches in order to be able to use a larger timestep. For this reason
we have treated some of the terms appearing in the right-hand-side of the model equations implicitly
for stabiliztation, as explained below.

3.1 Stability-Enhanced Wall-Resolved Models: k − ω

We investigated the performance of several limiters, commonly used in the RANS literature, for the
production terms in the k and ω equations as well as for the eddy viscosity. Two versions of the
k − ω model were evaluated that differ in the values of some of the model coefficients; in addition,
the 2006 model includes a so-called cross-diffusion term Sω.

We found that for external flows it is important to limit the value of eddy viscosity in the
far field, which is typically not well resolved, in order to avoid abrupt variations in total viscosity.
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Figure 5: Comparison of mean streamwise velocity u+ and turbulent kinetic energy k+ profiles for
the BFS at Re = 149, 700 using the k − τ model of kw98.

Such variations can cause stability problems to the simulation and/or can significantly increase the
number of pressure/velocity iterations needed for convergence at every timestep. The performance
of the modified version of the k − ω model was tested for flow past a NACA0012 airfoil geometry,
with varying free-stream conditions. With the modifications described above we obtained fully
converted results for the drag and lift coefficients even for zero free-stream values of k.

Tables 2 and 3 show the values of the drag and lift coefficient obtained by using the two versions
of the k − ω model (1998 and 2006) for flow past a NACA0012 airfoil at 0 and 10 degrees aoa. As
can be observed, as resolution improves by increasing the polynomial order from N = 7 to N = 11
(8 and 12 points per direction, respectively), the model converges to the benchmark values of the
drag and lift coefficients, which are also shown in the tables.

3.2 Stability-Enhanced Wall-Resolved Models: k − τ

Another significant development during the past fiscal year was the implementation of the k − τ
version of the k − ω model and the investigation of the scaling of all the terms appearing in the
right-hand-side of the k and τ equations. The k − τ model was originally developed by Kalitzin et
al. [14, 15] as an alternative implementation of the k − ω model. The equations for k and τ are
derived from the k − ω equations by using the definition τ = 1/ω:

∂(ρk)

∂t
+∇ · (ρkv) = ∇ ·

[
(µ+

µt
σk

)∇k
]

+ P − ρβ∗k
τ
, (14)

∂(ρτ)

∂t
+∇ · (ρτv) = ∇ ·

[
(µ+

µt
σω

)∇τ
]
− γ τ

k
P + ρβ − 2

µ

τ
(∇τ · ∇τ) , (15)
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Figure 6: Comparison of mean streamwise velocity u+ and turbulent kinetic energy k+ profiles for
the flow past a NACA0012 airfoil at Re = 6M and a 10degree angle of attack using the k− τ model
of kw98.

where now Gk = P , Yk = β∗k/τ , Gτ = γτP/k, Yτ = β, and Sτ = 2ν (∇τ · ∇τ) /τ . In contrast to
the original form of the k − ω model, in which the ω equation contains terms that become singular
close to wall boundaries, all terms in the right-hand side of the k and τ equations reach a finite limit
at walls and do not need to be treated asymptotically; that is, they do not require regularization for
numerical implementation. The last term in the τ equation was implemented in the form proposed
by Kok and Spekreijse (2000) [16], the following:

Sτ = 2ν (∇τ · ∇τ) /τ = 8ν
(
∇τ1/2 · ∇τ1/2

)
. (16)

Extensive verification tests of the k − τ model were performed for channel flow, flow past a
backward facing step (BFS), and flow past the NACA0012 airfoil at aoa=0 and 10. Both versions of
the model coefficients (kw98 and kw06) were implemented. Figure 4 shows the comparison of the
regularized k−ω and the k− τ model for flow in a channel at Re = 10, 950. As can be observed, the
agreement of the two models is excellent for both the mean velocity and the kinetic energy. The flow
past a BFS at Re = 149, 700 (Driver et al. [17]) was simulated using the k − τ model, and results
were compared with the results of the regularized k − ω model (published in [9]). Figure 5 shows
isocontours of mean streamwise velocity u and the k at steady state. The length of the recirculation
zone from the RANS simulation using the k − τ model with the kw98 coefficients is equal to 6.59H
(where H is the step height) and was found to be in excellent agreement with the corresponding
value obtained by using the regularized k − ω model (6.58H). The recirculation zone length for the
kw06 version is equal to 6.53H.

We also investigated the performance of the k − τ model and compared it with the regularized
k − ω model results (described in the preceding subsection) for the benchmark case of flow past the
NACA0012 airfoil at aoa=0 and 10, which is relevant for external flows. The values of the drag and
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lift coefficients obtained with the k − τ model are also shown in Tables 2 and 3 for the two versions
of the model using varying resolution at Re = 6× 106. As can be observed in these tables, the drag
and lift coefficients are in very good agreement with both the regularized k − ω model results and
with the benchmark values from the NASA LARC website. Figure 6 shows the Isocontours of the
mean streamwise velocity u+ and turbulent kinetic energy k+ profiles at steady state for the case of
Re = 6× 106 and aoa=10 and computed by using the k − τ model of kw98.

3.3 Implicit Treatment of Source Terms in the Model Equations

A major development toward improving the robustness and efficiency of RANS in Nek5000 was
the treatment of some of the source terms in the k and ω and the k and τ equations implicitly by
including them in the left hand side of the equations. The terms that were treated implicitly are the
following: For the k − ω model (i) the dissipation term in the k equation (Yk) and (ii) two terms in
the right-hand side of the ω equation that become unbounded close to walls at the same rate and
need to be grouped together. For the k − τ model these terms are (i) the dissipation term in the
k equation (Yk) and (ii) the last term in the τ equation, which can become a source of instability.
Treating all these terms implicitly did not increase the computational cost per timestep but allowed
a significant increase of the timestep, which is now limited only by the convective CFL condition.

3.4 Reduced Boundary Layer Resolution by Using Novel RANS Wall Functions

Another way to reduce resolution requirements close to wall boundary layers is to use wall functions
based on the log law. We are investigating this approach for RANS and LES and will pursue it
further in the near future.

4 Conclusions and Future Work

We developed steady-state solvers and new RANS models to enhance the performance of Nek5000
for analysis of thermal-hydraulics problems with widely-disparate time-scales. The main focus is
the following: (i) developing steady state solvers and performing simulations for a rod bundle and
pebble beds and (ii) enhancing RANS solvers with improved stability and performance.

Our preconditioning strategy for a steady-state solver is based on Schwarz preconditioning with
fast diagonalization, which enabled us to achieve 7× speedup for a long rod bundle case [1, 2, 4].
Adding this preconditioner to JFNK remains as a future work, which will improve performance
further. The current Nek5000 production unsteady RANS (k-ω and k-τ) approaches employ
backward difference for the time derivative coupled with implicit treatment of diffusion and explicit
treatment of advection, which limits the timestep size to CFL ∼ 0.5, which is a convective restriction.
There remains room for further improvement by using characteristics [18] or Jacobian-free Newton-
Krylov (JFNK) methods [3, 19] to circumvent the CFL constraint. Further collaborations with the
ECP-CEED team will be pursued in this area in the near future.
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